

PROJECT:MATERIAL CHECK

CONSULTANTS

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORTED TO:

REALSTONE SYSTEMS 560 KIRTS BOULEVARD SUITE 120

TROY, MI 48084

ATTN: STEVE HODGES

AET PROJECT NO: 20-11101

DATE: November 1, 2012

Product Type: Date Tested: White Birch

10/22/10 to 10/26/12

Conformance:

The stone samples meet ASTM:C568-10 medium-density requirements for Limestone

dimension stone.

Sample	A	В	C	D	E	Average	Requirements ASTM C568
Sti	rength Prope	rties: ASTM	C170- WE	T CONDI	TION - PER	PENDICULAR	
Compression Strength, psi:	9,920	10,780	10,860	12,350	9,500	10,680	4,000 Min
Sti	ength Prope	rties: ASTM	C170 - DR	Y CONDIT	TION – PER	PENDICULAR	
Compression Strength, psi:	15,220	3,560	16,160	6,590		10,380	4,000 Min
	Strength Pro	operties: AS	TM C170 -	- WET CO	NDITION -	PARALLEL	
Compression Strength, psi:	15,170	10,810	5,890	17,270	12,030	12,230	4,000Min
	Strength Pr	operties: AS	TM C170 -	- DRY CO	NDITION - 1	PARALLEL	
Compression Strength, psi:	15,030	14,440	13,570	9,100	15,280	13,480	4,000 Min
	Strength	Properties:	ASTM C99	& C880 -	WET CONI	DITION -	
Modulus of Rupture, psi:	1,290 1,300	1,040 2,100	300 1,150	1,650 1,460	1,240 860	1,240	500 Min
Flexural Strength, psi:	1,100 120	1,110 890	790 900	1,070 1,130	1,040 1,100	930	
	Strengt	h Properties	: ASTM C9	9 & C880 -	DRY CON	DITION	
Modulus of Rupture, psi:	1,270 2,240	2,300 1,990	1,250 2,250	2,410 2,440	1,720 2,610	2,050	500 Min
Flexural Strength, psi:	1,140 790	1,270 1,120	1,020 1,110	230 1,190	1,080 940	990	

550 Cleveland Avenue North | St. Paul, MN 55114

Phone 651-659-9001 | Toll Free 800-972-6364 | Fax 651-659-1379 | www.amengtest.com | AA/EEO This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

Sample	A	В	С		Average	Requirement ASTM C568
		Phy	sical Propertie	es: ASTM:C97		
Specific Gravity:	2.364	2.397	2.296	cs. Addin.Cor	2.352	
Bulk Density, pcf:	147.5	149.6	143.2		146.8	135 Min
Absorption, %	5.5	5.0	6.6		5.7	7.5 Max
					5.7	7.5 IVIUX
Remarks: The samples	were destroyed	l during testi	ng and discarde	ed.		
Remarks: The samples	were destroyed	during testing	ng and discarde	ed.		
Remarks: The samples	were destroyed	I during testing	ng and discarde	ed.		
	were destroyed	during testing	ng and discarde		n Dei en De	
Remarks: The samples of the sample	were destroyed	I during testin	ng and discarde		ort Reviewed By:	
	were destroyed	l during testin	ng and discarde		ort Reviewed By:	
	were destroyed	l during testi	ng and discarde		ort Reviewed By:	
	were destroyed	during testi	ng and discarde	Repo	ort Reviewed By:	
Report Prepared By:	were destroyed	during testing	ng and discarde	Repo	·	

CONSULTANTS
- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORT OF FREEZE-THAW TESTING OF STONE

PROJECT: REPORTED TO:

FREEZE-THAW TESTING REALSTONE SYSTEMS WHITE BIRCH STONE 560 KIRTS BOULEVARD

SUITE 120 TROY, MI 48084

ATTN: KURT FEIN

AET JOB NO: 29-01290 **DATE:** OCTOBER 11, 2013

INTRODUCTION

This report presents the results of testing performed on five stone units. Samples were submitted to our laboratory by you. The scope of our work consisted of performing freeze-thaw testing and reporting our results. Testing was conducted in accordance with ASTM C67 "Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile" and evaluated according to ASTM C 216 "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)". Our work was authorized by you on June 14, 2013.

SAMPLE INFORMATION

American Engineering Testing, Inc. received 1 box of 5 samples of stone from Realstone Systems labeled as White Birch on June 19, 2013.

TESTING METHODS

The specimens were subjected to freeze-thaw cycling in accordance with ASTM C67.

- 1. The samples were placed in a pan with water at a depth of ½" and frozen for 20 hours. Next the samples were immersed in a thawing tank for 4 hours. This process is continued for 50 cycles or until the specimens develop a crack or appears to have lost more than 3% of its original weight by disintegration as judged by visual inspection.
- 2. Final weight loss percentages are calculated by dividing the oven dry weight of dislodged materials by the final oven dried sample weight, plus the total dislodged materials.

TEST RESULTS

	WHITE B	IRCH STO	NE
Cycles	Weight Loss %	Full Width Cracking	Rating
1	0.0	No	See Remarks
2	0.0	No	See Remarks
3	0.0	No	See Remarks
4	0.0	No	See Remarks
5	0.0	No	See Remarks
Average	0.0		

REMARKS

The samples were tested to 50 freeze thaw cycles and found to meet the specifications of ASTM C216 "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)" for SW facing material. This report represents specifically the samples tested. According to ASTM C216 section 6.1.3.1 No individual unit separates or disintegrates resulting in a weight loss greater than 0.5% of its original dry weight. Also section 6.1.3.2 No individual unit develops a crack that exceeds, in length, the units least dimension. If you have any questions, please feel free to call us.

Report Prepared By:

American Engineering Testing, Inc.

Joseph T. Johnson /

Concrete Technician III

Phone: 651-659-1354 Fax: 651-647-2744

jtjohnson@amengtest.com

Report Reviewed By:

American Engineering Testing, Inc.

Daniel M. Vruno, P.E.

Principal Engineer

MN Lic. No. 42037

Phone: 651-659-1334 Fax: 651-647-2744

dvruno@amengtest.com

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORT OF STONE TESTING

PROJECT: MATERIAL CHECK REPORTED TO: REALSTONE SYSTEMS 560 KIRTS BOULEVARD SUITE 120

TROY, MI 48084

AET PROJECT NO: 20-11101

DATE: November 1, 2012

Product Type:

Latte

Date Tested:

10/22/10 to 10/26/12

Conformance:

The stone samples meet ASTM:C568-10 medium-density requirements for Limestone

dimension stone.

Sample	A	В	С	D	E	Average	Requirements ASTM C568
Str	ength Proper	rties: ASTM	<u> C170– WE</u>	ET CONDIT	TION - PER	PENDICULAR	
Compression Strength, psi:	3,110	6,870	8,490	6,720	9,540	6,950	4,000 Min
Stro	ength Proper	ties: ASTM	C170 – DR	RY CONDIT	TION – PER	PENDICULAR	
Compression Strength, psi:	6,460	8,200	12,380	12,860	9310	9,840	4,000 Min
	Stuanath Duc	montion AS	TM C170	WET CO	UDITION	D A D A I Y EII	
				(2)		PARALLEL	
Compression Strength, psi:	4,820	7,350	6,800	5,300	3,850	5,620	4,000 Min
	Strength Pro	perties: AS	TM C170	- DRY CON	NDITION - I	PARALLEL	
Compression Strength, psi:	13,910	11,550	9,930	11,030	7,780	10,840	4,000 Min
				<u> </u>	WET CONI	<u> DITION -</u>	
Modulus of Rupture, psi:	1,670 1,640	1,220 1,490	1,720 1,490	1,060 1,480	1,940 1,340	1,510	500 Min
Flexural Strength, psi:	1,560	1,840	1,380	200	1,160		
Mexical Sciengin, psi.	1,460	1,270	1,390	1,230	1,730	1,320	
	Strengtl	Properties	: ASTM C	9 & C880 -	DRY CON	DITION	
Modulus of Rupture, psi:	1,430	1,030	1,350	1,550	1,270	1,280	500 Min
read of respect, por.	1,230	1,380	870	1,020	1,650	1,260	500 Min
Flexural Strength, psi:	980	900	1,110	1,160	970	1,050	
	1,050	1,120	1,160	1,110	980	,	

550 Cleveland Avenue North | St. Paul, MN 55114

Phone 651-659-9001 | Toll Free 800-972-6364 | Fax 651-659-1379 | www.amengtest.com | AA/EEO |
This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

		Phy:	sical Properties:	ASTM:C97	
Specific Gravity:	2.374	2.294	2.372	2.347	
Bulk Density, pcf:	148.1	143.2	148.0	146.4	135 Min
Absorption, %	2.26	4.23	2.60	3.03	7.5 Max
Remarks: The samples	were destroyed	during testi	ng and discarded.		
Report Prepared By:				Report Reviewed By:	
				John Amundson	- 10:

CONSULTANTS
• ENVIRONMENTAL
• GEOTECHNICAL
• MATERIALS
• FORENSICS

REPORT OF FREEZE-THAW TESTING OF STONE

PROJECT: REPORTED TO:

MATERIAL EVALUATION REALSTONE SYSTEMS LATTE-STONE UNITS 560 KIRTS BLVD

SUITE 120 TROY, MI 48084

ATTN: STEVE HODGES

AET JOB NO: 20-11101 **DATE:** JANUARY 29, 2013

INTRODUCTION

This report presents the test results on five stone units. Samples were submitted and identified by you. The scope of our work consisted of conducting freeze-thaw testing in accordance with ASTM C67-12, "Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile" and evaluated according to ASTM C 216-12a "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)." Our work was authorized by you on February 20, 2012.

SAMPLE INFORMATION

American Engineering Testing, Inc. received 5 stone samples identified as Latte #1 through #5 from Realstone Systems.

TESTING METHODS

The specimens were subjected to freeze-thaw cycling in accordance with ASTM C67, Section 9.

- 1. The samples were placed in a pan with water at a depth of ½" and frozen for 20 hours. Next the samples were immersed in a thawing tank for 4 hours. This process continued for 50 cycles or until the specimens develop a crack or appears to have lost more than 3% of its original weight by disintegration as judged by visual inspection.
- 2. Final weight loss percentages are calculated by dividing the oven dry weight of dislodged material by the final oven dried sample weight, plus the total dislodged material.

TEST RESULTS

Sample	Weight	Full	Rating
	Loss %	Width	
		Cracking	
L1	0.005%	No	See Remarks
L2	0.010%	No	See Remarks
L3	0.004%	No	See Remarks
L4	0.007%	No	See Remarks
L5	0.005%	No	See Remarks
Average	0.006%		

REMARKS

The samples were tested for 50 freeze thaw cycles. The test results meet the specifications of ASTM C216-12a "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)" for SW facing material. This report represents specifically the samples tested. The ASTM C216 requirements for freeze-thaw durability in section 6.1.3.1 state that no individual unit separates or disintegrates resulting in a weight loss greater than 0.5% of its original dry weight. Additionally, ASTM C216, Section 6.1.3.2 states that no individual unit develops a crack that exceeds, in length, the units least dimension. If you have any questions, please feel free to call us.

Report Prepared By:

American Engineering Testing, Inc.

Joseph T. Johnson /

Concrete Technician III Phone: 651-659-1354 Fax: 651-647-2744

itjohnson@amengtest.com

Report Reviewed By:

American Engineering Testing, Inc.

Daniel M. Vruno, P.E.

Principal Engineer

MN Lic. No. 42037 Phone: 651-659-1334

Fax: 651-647-2744 dvruno@amengtest.com

For additional help or with questions please contact us at 1-866-698-5066 or at realstonesystems.com

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORT OF STONE TESTING

PROJECT:

MATERIAL CHECK

REPORTED TO:

REALSTONE SYSTEMS 560 KIRTS BOULEVARD SUITE 120

TROY, MI 48084

AET PROJECT NO: 20-11101

DATE: November 1, 2012

Product Type: Date Tested:

Mocha

10/20/10 to 10/26/12

Conformance:

The stone samples meet ASTM:C616-08 requirements for Quartzitic Sandstone

dimension stone.

Sample	A	В	С	D	E	Average	Requirements ASTM C616
Str	ength Proper	ties: ASTM	C170- WE	T CONDIT	TION - PER	PENDICULAR	
Compression Strength, psi:	11,840	12,340	13,370	12,760	14150	12,890	10,000 Min
Stre	ength Proper	ties: ASTM	C170 - DR	Y CONDIT	ΓΙΟΝ – PER	PENDICULAR	
Compression Strength, psi:	20,240	18,980	23,210	20,910	20,440	20,760	10,000 Min
	Strength Pro	perties: AS	TM C170 -	- WET CO	NDITION - 1	PARALLEL	
Compression Strength, psi:	13,030	13,140	12,280	14,530	13,140	13,220	10,000 Min
	Strength Pro	operties: AS	TM C170	- DRY CO	NDITION - I	PARALLEL	
Compression Strength, psi:	19,590	17,400	17,440	20,320	17,150	18,380	10,000 Min
	C4 4b	D	A COTTAL COA		WET COM	OTTON	
					WET CONI	DITION -	
Modulus of Rupture, psi:	2,100 2,040	2,470 2,040	2,030 2,330	2,050 2,190	2,190 2,050	2,150	1,000 Min
Flexural Strength, psi:	1,090 1,110	1,380 1,280	1,130 1,040	1,430 1,350	1,440 1,070	1,230	
	1,110	1,200	1,010	1,550	1,070		
	Strengt	h Properties	s: ASTM C	99 & C880 -	- DRY CON	DITION	
Modulus of Rupture, psi:	2,550 2,560	2,630 2,540	2,550 2,220	2,700 2,590	2,690 2,890	2,590	1,000 Min
Flexural Strength, psi:	1,860 1,860	1,700 1,910	1,760 1,720	1,640 1,940	1,730 1,830	1,800	

550 Cleveland Avenue North | St. Paul, MN 55114

Phone 651-659-9001 | Toll Free 800-972-6364 | Fax 651-659-1379 | www.amengtest.com | AA/EEO
This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

AET Project No. 20-11101 Page 2 of 2

Sample	, A	В	С	Average	Requirements ASTM C616
		Phys	sical Properties: ASTM:C97		
Specific Gravity:	2.621	2.618	2.625	2.078	
Bulk Density, pcf:	163.5	163.4	163.8	163.6	150 Min
Absorption, %	1.06	1.13	1.03	1.08	3.0 Max

Remarks: The samples were destroyed during testing and discarded.

Report Prepared By:	Report Reviewed By:
John J. Haupt, PE Staff Engineer II	John Amundson Principal Engineer

CONSULTANTS · ENVIRONMENTAL · GEOTECHNICAL MATERIALS

FORENSICS

REPORT OF FREEZE-THAW TESTING OF STONE

PROJECT: **REPORTED TO:**

MATERIAL EVALUATION REALSTONE SYSTEMS MOCHA-STONE UNITS

560 KIRTS BLVD

SUITE 120 TROY, MI 48084

ATTN: STEVE HODGES

AET JOB NO: 20-11101 DATE: JANUARY 29, 2013

INTRODUCTION

This report presents the test results on five stone units. Samples were submitted and identified by you. The scope of our work consisted of conducting freeze-thaw testing in accordance with ASTM C67-12, "Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile" and evaluated according to ASTM C 216-12a "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)." Our work was authorized by you on February 20, 2012.

SAMPLE INFORMATION

American Engineering Testing, Inc. received 5 stone samples identified as Mocha #1 through #5 from Realstone Systems.

TESTING METHODS

The specimens were subjected to freeze-thaw cycling in accordance with ASTM C67, Section 9.

- 1. The samples were placed in a pan with water at a depth of $\frac{1}{2}$ " and frozen for 20 hours. Next the samples were immersed in a thawing tank for 4 hours. This process continued for 50 cycles or until the specimens develop a crack or appears to have lost more than 3% of its original weight by disintegration as judged by visual inspection.
- 2. Final weight loss percentages are calculated by dividing the oven dry weight of dislodged material by the final oven dried sample weight, plus the total dislodged material.

TEST RESULTS

Sample	Weight Loss %	Full Width Cracking	Rating
M1	0.000%	No	See Remarks
M2	0.002%	No	See Remarks
M3	0.004%	No	See Remarks
M4	0.007%	No	See Remarks
M5	0.014%	No	See Remarks
Average	0.005%		

REMARKS

The samples were tested for 50 freeze thaw cycles. The test results meet the specifications of ASTM C216-12a "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)" for SW facing material. This report represents specifically the samples tested. The ASTM C216 requirements for freeze-thaw durability in section 6.1.3.1 state that no individual unit separates or disintegrates resulting in a weight loss greater than 0.5% of its original dry weight. Additionally, ASTM C216, Section 6.1.3.2 states that no individual unit develops a crack that exceeds, in length, the units least dimension. If you have any questions, please feel free to call us.

Report Prepared By: American Engineering Testing, Inc.

Joseph T. Johnson /

Concrete Technician III Phone: 651-659-1354 Fax: 651-647-2744

itjohnson@amengtest.com

Report Reviewed By:

American Engineering Testing, Inc.

Daniel M. Vruno, P.E.

Principal Engineer MN Lic. No. 42037 Phone: 651-659-1334

Fax: 651-647-2744 dvruno@amengtest.com

For additional help or with questions please contact us at 1-866-698-5066 or at realstonesystems.com

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORT OF STONE TESTING

PROJECT:

MATERIAL CHECK

REPORTED TO:

REALSTONE SYSTEMS 560 KIRTS BOULEVARD

SUITE 120 TROY, MI 48084

AET PROJECT NO: 20-11101

DATE: November 1, 2012

Product Type:

Roman Beige

Date Tested:

10/22/10 to 10/26/12

Conformance:

The stone samples meet ASTM:C568-10 medium-density requirements for Limestone

dimension stone.

Sample	A	В	С	D	E	Average	Requirements ASTM C568
Str	ength Proper	rties: ASTM	<u>1 C170– WE</u>	ET CONDI	<u> </u>	PENDICULAR	
Compression Strength, psi:	13,330	14,910	11,480	7,430	8,710	11,170	4,000 Min
Str	ength Proper	rties: ASTM	I C170 – DR	Y CONDIT	TION - PER	PENDICULAR	
Compression Strength, psi:	11,190	14,450	21,820	21,050	12,560	16,210	4,000 Min
	Strength Pro	perties: AS	TM C170 -	- WET CO	NDITION - 1	PARALLEL	
Compression Strength, psi:	6,590	6,600	7,450	4,260	7,260	6,430	4,000 Min
	Strength Pro	operties: AS	STM_C170	- DRY CO	NDITION - 1	PARALLEL	
Compression Strength, psi:	19,490	23,440	27,260	17,290	11,700	19,840	4,000 Min
	Strength	Properties:	ASTM C99	9 & C880 –	WET CONI	DITION -	
Modulus of Rupture, psi:	810 700	800 880	720 930	810 690	810	790	500 Min
Flexural Strength, psi:	850 1,130	840 730	1,170 980	910 1,070	990	960	
	Strengt	h Properties	s: ASTM C	99 & C880 -	- DRY CON	DITION	
Modulus of Rupture, psi:	1,740 1,960	1,300 1,480	1,750 1,220	1,390 1,730	· 1,280 910	1,450	500 Min
Flexural Strength, psi:	1,500 1,020	1,400 1,170	1,460 1,450	1,250 1,730	1,480 1,510	1,400	

550 Cleveland Avenue North | St. Paul, MN 55114

Phone 651-659-9001 | Toll Free 800-972-6364 | Fax 651-659-1379 | www.amengtest.com | AA/EEO
This document shall not be reproduced, except in full, without written approval from American Engineering Testing. Inc.

Sample	A	В	С		Average	Requireme ASTM C5
		Phys	sical Proper	ties: AS	rm:C97	
Specific Gravity:	2.408	2.417	2.425		2.417	
Bulk Density, pcf:	150.3	150.8	151.3		150.8	135 Mi
Absorption, %	4.1	4.2	3.9		4.1	7.5 Ma
Remarks: The samples	were destroyed	l during testi	ng and discar	rded.		
Remarks: The samples	were destroyed	l during testi	ng and discar	rded.		
Remarks: The samples Report Prepared By:	were destroyed	l during testii	ng and disca	rded.	Report Reviewed By:	
	were destroyed	during testi	ng and discar	rded.	Report Reviewed By:	
Report Prepared By:	were destroyed	l during testin	ng and discar	rded.		
	were destroyed	during testin	ng and discar	rded.	Report Reviewed By: John Amundson Principal Engineer	_
Report Prepared By: John J. Haupt, PE	were destroyed	l during testin	ng and discar	rded.	John Amundson	_
Report Prepared By: John J. Haupt, PE	were destroyed	l during testin	ng and discar	rded.	John Amundson	_
Report Prepared By: John J. Haupt, PE	were destroyed	l during testin	ng and discar	rded.	John Amundson	
Report Prepared By: John J. Haupt, PE	were destroyed	during testin	ng and discar	rded.	John Amundson	_

For additional help or with questions please contact us at 1-866-698-5066 or at realstonesystems.com

CONSULTANTS
• ENVIRONMENTAL
• GEOTECHNICAL
• MATERIALS

FORENSICS

REPORT OF FREEZE-THAW TESTING OF STONE

PROJECT: REPORTED TO:

MATERIAL EVALUATION REALSTONE SYSTEMS ROMAN BEIGE-STONE UNITS 560 KIRTS BLVD

SUITE 120 TROY, MI 48084

ATTN: STEVE HODGES

AET JOB NO: 20-11101 **DATE:** JANUARY 29, 2013

INTRODUCTION

This report presents the test results on five stone units. Samples were submitted and identified by you. The scope of our work consisted of conducting freeze-thaw testing in accordance with ASTM C67-12, "Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile" and evaluated according to ASTM C 216-12a "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)." Our work was authorized by you on February 20, 2012.

SAMPLE INFORMATION

American Engineering Testing, Inc. received 5 stone samples identified as Roman Beige #1 through #5 from Realstone Systems.

TESTING METHODS

The specimens were subjected to freeze-thaw cycling in accordance with ASTM C67.

- 1. The samples were placed in a pan with water at a depth of ½" and frozen for 20 hours. Next the samples were immersed in a thawing tank for 4 hours. This process continued for 50 cycles or until the specimens develop a crack or appears to have lost more than 3% of its original weight by disintegration as judged by visual inspection.
- 2. Final weight loss percentages are calculated by dividing the oven dry weight of dislodged material by the final oven dried sample weight, plus the total dislodged material.

TEST RESULTS

Sample	Weight Loss %	Full Width Cracking	Rating
RB1	0.42%	Yes	See Remarks
RB2	1.74%	Yes	See Remarks
RB3	62.83%	Yes	See Remarks
RB4	55.27%	Yes	See Remarks
RB5	0.47%	Yes	See Remarks
Average	24.14%		

REMARKS

The samples were tested for 50 freeze thaw cycles and did not to meet the specifications of ASTM C216-12a "Standard Specification for Facing Brick (Solid Masonry Units Made from Clay or Shale)" for SW facing material. This report represents specifically the samples tested. The ASTM C216 requirements for freeze thaw durability in 6.1.3.1 state that no individual unit separates or disintegrates resulting in a weight loss greater than 0.5% of its original dry weight. Additionally, ASTM C216, Section 6.1.3.2 states that no individual unit develops a crack that exceeds, in length, the units least dimension. All samples exhibited unsatisfactory weight loss, full width cracking or both. If you have any questions, please feel free to call us.

Report Prepared By: American Engineering Testing, Inc. Report Reviewed By: American Engineering Testing, Inc.

Joseph T. Johnson / Concrete Technician III Phone: 651-659-1354 Fax: 651-647-2744

jtjohnson@amengtest.com

Daniel M. Vruno, P.E. Principal Engineer MN Lic. No. 42037 Phone: 651-659-1334 Fax: 651-647-2744

dvruno@amengtest.com

For additional help or with questions please contact us at 1-866-698-5066 or at realstonesystems.com

- * ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORT OF STONE TESTING ASTM C616-10 "STANDARD SPECIFICATION FOR QUARTZ-BASED DIMENSION STONE"

PROJECT:

STONE TESTING

REPORTED TO:

REALSTONE SYSTEMS 560 KIRTS BOULEVARD SUITE 120

TROY, MI 48084

ATTN: MIKE QUARTON

AET PROJECT NO: 20-13398

DATE: NOVEMBER 16, 2015

Product Type: Date Tested:

Greystone Gold Quartzite

November 9 to 16, 2015

Conformance:

The stone samples meet ASTM:C616-11 Quarzite modulus of rupture, absorption and

density requirements for Quartz-based dimension stone.

Modulus of Rupture (psi): ASTM C99-15 "Standard Test Method for Modulus of Rupture of Dimension Stone"

				Stone		
Sample	A	В	С	D	Average	Requirements ASTM C616
			Perpendicu	lar to Bedding Ri	ft	
Dry	3,010	2,830	3,200	3,090	3,030	2,000

Physical Properties: ASTM C97-15 " Standard Test Methods for Absorption and Bulk Specific Gravity of

			Dimensio	on Stone"		
Sample	A	В	С	D	Average	Requirements ASTM C616
Specific Gravity:	2,667	2.720	2.717	2.718	2.705	
Bulk Density, pcf:	166.4	169.8	169.5	169.6	168.8	160 Min
Absorption %	0.2	0.1	0.1	0.2	0.2	1 Max

Remarks: The samples were destroyed during testing and discarded. The ASTM standards for the respective tests require 5 samples to be tested for each orientation and conditions. Four samples were submitted for each condition and orientation. It is our understanding the material source could not provide the dimensions required for the tests.

Report Prepared By:

John J. Ha Senior Engineer Report Reviewed By:

David G. Wirth

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALSFORENSICS

REPORT OF STONE TESTING

PROJECT: STONE TESTING REPORTED TO: REALSTONE SYSTEMS 560 KIRTS BOULEVARD

SUITE 120 TROY, MI 48084

ATTN: MIKE QUARTON

AET PROJECT NO: 20-13398

DATE: NOVEMBER 16, 2015

Product Type: Date Tested: Berkshire Buff Quartzite November 9 to 16, 2015

Conformance:

The stone samples meet ASTM:C616-11 Quarzite modulus of rupture, absorption and

density requirements for Quartz-based dimension stone.

Modulus of Rupture (psi): ASTM C99-15 "Standard Test Method for Modulus of Rupture of Dimension

ASTM C616-10 "STANDARD SPECIFICATION FOR QUARTZ-BASED DIMENSION STONE"

Sample	A St	B	С	D	Average	Requirements ASTM C616
			Perpendicu	lar to Bedding R	tift	
Dry	4,490	4,860	3,220	3,750	4,080	2,000

Physical Properties: ASTM C97-15 " Standard Test Methods for Absorption and Bulk Specific Gravity of

Dimension Stone										
Sample	A	В	С	D	,	Average	Requirements ASTM C616			
Specific Gravity:	2.882	2.875	2.881	2.882		2.880				
Bulk Density, pcf:	179.8	179.4	179.8	179.8		179.7	160 Min			
Absorption, %	0.1	0.1	0.1	0.1		0.1	1 Max			

Remarks: The samples were destroyed during testing and discarded. The ASTM standards for the respective tests require 5 samples to be tested for each orientation and conditions. Four samples were submitted for each condition and orientation. It is our understanding the material source could not provide the dimensions required for the tests.

Report Prepared By:

John J. Haupt Senior Engineer Report Reviewed By:

David G. Wirth

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORT OF STONE TESTING ASTM C615-11 "STANDARD SPECIFICATION FOR GRANITE DIMENSION STONE"

PROJECT:

STONE TESTING

REPORTED TO:

REALSTONE SYSTEMS 560 KIRTS BOULEVARD

SUITE 120 TROY, MI 48084

ATTN: MIKE QUARTON

AET PROJECT NO: 20-13398

DATE: NOVEMBER 16, 2015

Product Type: Date Tested: Bristol Black Granite November 9 to 16, 2015

Conformance:

The stone samples meet ASTM:C615-11 modulus of rupture, absorption and density

requirements for granite dimension stone.

Modulus of Rupture (psi): ASTM C99-15 "Standard Test Method for Modulus of Rupture of Dimension

Sample	A	В	С	D 1	Average	Requirements ASTM C615
			Perpendicu	lar to Bedding Ri	ft	
Dry	3,000	2,400	2,410	2,750	2,720	1,500

Physical Properties: ASTM C97-15 " Standard Test Methods for Absorption and Bulk Specific Gravity of

Dimension Stone								
Sample	A	В	C	D	Average	Requirements ASTM C615		
Specific Gravity:	2.671	2.680	2.673	2.688	2.739			
Bulk Density, pcf:	166.7	167.2	166.8	167.7	167.1	160 Min		
Absorption, %	0.5	0.3	0.5	0.3	0.4	0.4Max		

Remarks: The samples were destroyed during testing and discarded. The ASTM standards for the respective tests require 5 samples to be tested for each orientation and conditions. Four samples were submitted for each condition and orientation. It is our understanding the material source could not provide the dimensions required for the tests.

Report Prepared By:

John J. Haupt Senior Engineer Report Reviewed By:

David G. Wirth

ESTATE STONE ASTM TESTING DATA

REPORT OF SLATE STONE TESTING

CONSULTANTS

ENVIRONMENTAL

 GEOTECHNICAL MATERIALS

FORENSICS

Grade S₁

0.002 Max

PROJECT: STONE TESTING REPORTED TO: REALSTONE SYSTEMS 560 KIRTS BOULEVARD SUITE 120 TROY, MI 48084

ATTN: MIKE QUARTON

AET PROJECT NO: 20-13398

DATE: December 22, 2015

Product Type: Date Tested:

Somerset Sage

November 16 to December 21, 2015

Conformance:

The stone samples meet ASTM:C629-10 absorption and acid resistance requirements for

exterior slate dimension stone.

The stone samples meet ASTM C406-15 physical requirements for Grade S1.

Physical Properties: ASTM C121 " Standard Test Methods for water Absorption of Slate" Е

Sample	A	\mathbf{B}	, C	D	Е	F	Average	Requirements ASTM C629	
Specific Gravity:	2.707	2.712	2.754	2.714	2.719	2.729	2.721		
Bulk Density, pcf:	168.9	169.2	171.3	169.4	167.7	170.3	169.8		
Absorption, %	.25	0.23	0.0	0.34	0.19	0.25	0.21	0.25Max	
Roofing Slate									
	Α		В		С	Ave	rage	Requirements ASTM C406	
Span, in	2		2		2				
Width, in	4.0	1	4.01		4.02				
Average Thickness, in	0.5	15	0.505		0.50				
Breaking Load,	50	8	518		561		559	575 Min	

Remarks: The samples were destroyed during testing and discarded.

See attached report from CTL Group

Report Prepared By:

John J. Haupt Senior Engineer

lb

Depth of

Softening, in

Report Reviewed By:

David G. Wirth

0.0010

ESTATE STONE ASTM TESTING DATA

Client: American Engineering Testing

Project: Production Check

Contact: John Haupt
Submitter: John Haupt
Date Received: November 17, 2015

CTL Project No:

391352 J. L. Jones

CTL Project Mgr.: J. L. Jones
Analyst: G. Neiweem
Approved: J. L. Jones

Date Analyzed: December 21, 2015
Date Reported: December 21, 2015

ASTM C217 Standard Test Method for Weather Resistance of Slate

Specimen Identification

Specimen ider	itification								
	Reference		Before Acid Soak		Aft	After 7 Day Acid Soak			
Sample Reference Identification Point		Initial Thickness, in.	Thickness after Scraping, in.	Depth of Scraping, in.	Thickness after Acid Soak, in.	Thickness after Scraping, in.	Depth of Scraping, in.	Depth of Softening, in.	
Summerset Sage - 1	1 to 3	0.6387	0.6387	0.0000	0.5587	0.5577	0.0010	0.0010	
Summerset Sage - 2	1 to 3	0.5556	0.5556	0.0000	0.6335	0.6322	0.0013	0.0013	
Summerset Sage - 3	1 to 3	0.5952	0.5940	0.0012	0.5906	0.5893	0.0013	0.0001	
Summerset Sage - 4	1 to 3	0.5724	0.5720	0.0004	0.5673	0.5651	0.0022	0.0018	

Average Values for all Samples

Average Depth of Scraping Before Acid Soak (4 Specimens), in.	0.0004
Average Depth of Scraping After Acid Soak (4 Specimens), in.	0.0014
Average Depth of Softening (4 Specimens), in.	0.0010

Notes:

- 1. This report may not be reproduced except in its entirety.
- 2. Testing was performed in general accordance with ASTM C217/C217M 15a.
- 3. Thicknesses are an average of three measurements at 3 different reference points.

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

1,000

REPORT OF STONE TESTING ASTM C568-10 "STANDARD SPECIFICATION FOR LIMESTONE DIMENSION STONE"

PROJECT:

STONE TESTING

REPORTED TO:

REALSTONE SYSTEMS 560 KIRTS BOULEVARD

SUITE 120 TROY, MI 48084

ATTN: MIKE QUARTON

AET PROJECT NO: 20-13398

3,390

DATE: NOVEMBER 16, 2015

3,510

Product Type: Date Tested:

Carbon Limestone

November 9 to 16, 2015

3,760

Conformance:

Dry

The stone samples meet ASTM:C568-10 high-density requirements for Limestone

dimension stone.

3,500

Modulus of Rupture (psi): ASTM C99-15 "Standard Test Method for Modulus of Rupture of Dimension

Stone"

Requirements C D Sample В Average ASTM C568

> Perpendicular to Bedding Rift 3,400

Compressive Strength (psi): ASTM C170-15a "Standard Test Method for Compression Strength of

Dimension Stone"

Sample	Α	В	C	D	Average	Requirements ASTM C568
			Perpendic	ular to Bedding R	tift	
Dry	15,150	15,590	15,360	18,360	16,120	8,000

Physical Properties: ASTM C97-15 " Standard Test Methods for Absorption and Bulk Specific Gravity of

Dimension Stone									
Sample	A	В	С	D	Average	Requirements ASTM C568			
Specific Gravity:	2.732	2.739	2.746	2.740	2.739				
Bulk Density, pcf:	170.4	170.9	171.4	171.0	170.9	160 Min			
Absorption, %	0.1	0.2	0.0	0.1	0.1	3 Max			

Remarks: The samples were destroyed during testing and discarded. The ASTM standards for the respective tests require 5 samples to be tested for each orientation and conditions. Four samples were submitted for each condition and orientation. It is our understanding the material source could not provide the dimensions required for the tests.

Report Prepared By:

John J. Haupt Senior Engineer Report Reviewed By:

David G. Wirth

Manager, Construction Services

550 Cleveland Avenue North St. Paul, MN 55114

Phone 651-659-9001 | Toll Free 800-972-6364 | Fax 651-659-1379 | www.amengtest.com | AA/EEO This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

- ENVIRONMENTAL
- GEOTECHNICAL
- MATERIALS
- FORENSICS

REPORT OF SLATE STONE TESTING

PROJECT: STONE TESTING REPORTED TO: REALSTONE SYSTEMS 560 KIRTS BOULEVARD

SUITE 120 TROY, MI 48084

ATTN: MIKE QUARTON

AET PROJECT NO: 20-13398

DATE: December 22, 2015

Product Type: Date Tested: Charcoal Slate

November 16 to December 21, 2015

Conformance:

The stone samples meet ASTM:C629-10 requirements for exterior slate dimension stone.

The stone samples meet ASTM C406-15 physical requirements for Grade S1.

Modulus of Rupture (psi): ASTM C120-12 "Standard Test Methods of Testing of Slate (Breaking Load, Modulus of Rupture, Modulus of Elasticity"

Sample	Α	В	C	D	E	F	G	Η	Average	Requirements ASTM C629	
Across the Grain											
Dry	14,880	16,740	13,600	12,960	12,420	14,850	14,370	8,050	13,480	9,000	

Physical Properties: ASTM C121 "Standard Test Methods for water Absorption of Slate"

Sample	A	В	С	D	Average	Requirements ASTM C629
Specific Gravity:	2.776	2.776	2.761	2.778	2.773	
Bulk Density, pcf:	173.2	173.2	172.3	173.3	173.0	
Absorption, %	0.12	0.00	0.15	0.03	0.07	0.25 max

Roofing Slate

		C	harcoal Ledg	ge		
	Α	В _	С	D	Average	Requirements ASTM C406
Span, in	2	2	2	2		
Width, in	4.03	4.03	4.02	4.02		
Average thickness, in	0.67	0.73	0.61	0.55		
Breaking Load, Ib	2,210	2,080	1,570	1,560	1,860	575 Min
Depth of softening, in	See	attached repor	t from CTL G	roup	0.0012	Grade S ₁ 0.002 Max

CHARCOAL ASTM TESTING DATA

AET Project No. 20-13398, Charcoal Slate, Page 2 of 2

		9	Charcoal Shado	w		
	A	В	С	D	Average	Requirements ASTM C406
Span, in	. 2	2	2	2		
Width, in	4.02	4.02	4.03	4.01		
Average thickness, in	0.21	0.23	0.24	0.23		
Breaking Load, lb	10,190	5,830	7,410	6,790	6,040	575 Min
Depth of softening, in	See a	ttached rep	ort from CTL Gr	roup	0.0012	Grade S ₁ 0.002 Max

Remarks: The samples were destroyed during testing and discarded.

Report Prepared By:

John J. Haupt Senior Engineer Report Reviewed By:

CHARCOAL ASTM TESTING DATA

CTL Project No:

Contact:

American Engineering Testing

Production Check Project:

CTL Project Mgr.: Analyst:

John Haupt Submitter: John Haupt Date Received: November 17, 2015 Approved: J. L. Jones Date Analyzed: December 21, 2015 Date Reported: December 21, 2015

391352

J. L. Jones

G. Neiweem

ASTM C217 Standard Test Method for Weather Resistance of Slate

Specimen Identification

	Reference Point	Before Acid Soak			Aff	Donth of		
Sample Identification		Initial Thickness, in.	Thickness after Scraping, in.	Depth of Scraping, in.	Thickness after Acid Soak, in.	Thickness after Scraping, in.	Depth of Scraping, in.	Depth of Softening, in.
Charcoal - 1	1 to 3	0.6407	0.6404	0.0003	0.6455	0.6426	0.0029	0.0026
Charcoal - 2	1 to 3	0.6312	0.6297	0.0015	0.6288	0.6262	0.0026	0.0011
Charcoal - 3	1 to 3	0.6290	0.6276	0.0014	0.6308	0.6294	0.0014	0.0000
Charcoal - 4	1 to 3	0.6351	0.6347	0.0004	0.6376	0.6362	0.0014	0.0011

Average Values for all Samples

Average Depth of Scraping Before Acid Soak (4 Specimens), in.		0.0009
Average Depth of Scraping After Acid Soak (4 Specimens), in.	, "	0.0021
Average Depth of Softening (4 Specimens), in.		0.0012

Notes:

- 1. This report may not be reproduced except in its entirety.
- 2. Testing was performed in general accordance with ASTM C217/C217M 15a.
- 3. Thicknesses are an average of three measurements at 3 different reference points.

Corporate Office and Laboratory: 5400 Old Orchard Road Skokie, Illinois 60077-1030

Page 1 of 1